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Abstract 
 

This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which 
may occur near wells during high-flux injection of waste fluids into underground formations. 
Both numerical and analytical models are used in this study. General non-Darcy flow is 
described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow 
reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general 
dual continuum approach, covering commonly used conceptual models, such as double porosity, 
dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate 
analytical solution, as an extension of the Warren-Root solution, is discussed. 
 
The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient 
pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test 
analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, 
injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In 
addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure 
type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves 
provided in this work for non-Darcy flow in porous and fractured reservoirs will find their 
applications in well test interpretation using a type-curve matching technique.  
 
1. Introduction 
 
Darcy’s law has been used exclusively in studies of porous-medium phenomena. However, high-
velocity non-Darcy flow occurs in many cases involving subsurface flow systems, such as in the 
flow near high-flux wells during oil or gas production, water pumping, and liquid waste injection. 
Theoretical, field, and experimental studies on non-Darcy flow in porous media have been 
performed, most of which have been focused on single-phase flow conditions that pertain to the oil 
and gas industry (e.g., Tek et al., 1962; Swift and Kiel, 1962; Lee et al. 1987). Other researchers have 
devoted their efforts to finding and validating correlations of non-Darcy flow coefficients [e.g., Liu 
et al., 1995].  
 
In studies of non-Darcy flow through porous media, the Forchheimer equation has been generally 
used to describe single-phase non-Darcy flow. Several studies in the literature extend the 
Forchheimer equation to multiphase flow and provide equations for correlating non-Darcy flow 
coefficients under multiphase conditions [Evans et al., 1987; Evans and Evans, 1988; Liu et al., 
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1995; Wu 2001]. A general numerical method has been recently developed in modeling single-phase 
and multiphase non-Darcy flow in multidimensional porous and fractured reservoirs [Wu 2002a]. 
This numerical model incorporates the extended Forchheimer equation using an integral finite-
difference or a control-volume-numerical-discretization scheme, and implements an extended 
dual-continuum approach (such as double- or multiple-porosity, or dual-permeability method) 
for simulating non-Darcy fracture-matrix flow in a fractured medium. In addition, an 
approximate analytical solution is also obtained for analyzing non-Darcy well flow behavior 
through fractured reservoirs [Wu, 2002b].  
 
The objectives of this study are (1) to obtain insights into non-Darcy flow on transient pressure 
behavior through porous and fractured reservoirs and (2) to provide type curves for well test 
analyses of non-Darcy flow wells. The type curves generated include cases of drawdown, injection, 
and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-
Darcy flow into partially penetrating wells is also considered. The transient pressure type curves for 
flow in fractured reservoirs are based on the double-porosity model. The type curves provided in this 
work will find their applications in interpreting well tests of non-Darcy flow in porous and fractured 
reservoirs using a type-curve matching technique.  
 
2. Mathematical Model and Numerical Formulation 
 
A multiphase system in a porous or fractured aquifer is assumed to be composed of three phases: 
NAPL (oil), gas (air), and water. For simplicity, the three fluid components, water, NAPL, and gas, 
are assumed to be present only in their associated phases, with single-phase flow regarded as a 
special case of multiphase flow here. Each phase flows in response to pressure, gravitational, and 
capillary forces according to the multiphase extension of the Forchheimer equation for non-Darcy 
flow:  

fffff q)S(
t

)( +ρ−∇=ρφ
∂
∂

• v         (2.1) 

where ρ  is the density of fluid f (f = w for water, f = n for NAPL or oil, and f = g for gas); is the 
Darcy (or volumetric) velocity of fluid f;  S  is the saturation of fluid f; φ is the effective porosity of 
formation; t is time; and q is the sink/source term of phase (component) f per unit volume of 
formation, representing mass exchange through injection/production wells or resulting from 
fracture-matrix interactions. 
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Volumetric flow rate (namely Darcy velocity in the case of Darcy flow) for non-Darcy flow of each 
fluid may be described using the multiphase extension of the Forchheimer equation [Evans and 
Evans, 1988; Liu et al., 1995; Katz and Lee, 1990]: 
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where Pf is the pressure of phase f; g is the gravitational constant vector; µ is the dynamic 
viscosity of fluid f, k is the absolute/intrinsic permeability of the formation; k

f
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permeability to phase f; and β is the effective non-Darcy flow coefficient with a unit mf
-1 for fluid f 

under multiphase flow conditions [Evans and Evans, 1988].  
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Equation (2.1), the mass-balance governing equation for three phases needs to be supplemented with 
constitutive equations, which express all the secondary variables and parameters as functions of a set 
of primary thermodynamic variables of interest. Here, we borrow relative permeability and capillary 
pressure relations, and other correlations such as density and viscosity, from the multiphase Darcy 
flow model to complete the problem description. 
 
The additional nonlinearity introduced by non-Darcy flow to the governing equations makes it in 
general necessary to use a numerical approach. Equation (2.1) can be discretized in space using an 
integral finite-difference or control-volume finite-element scheme for a porous and/or fractured medium 
[Wu, 2002a]. The time discretization is carried out with a backward, first-order, finite-difference scheme. 
The discrete nonlinear equations for water, NAPL, and gas flow at Node i are written as follows:   
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where n denotes the previous time level; n+1 is the current time level; Vi is the volume of element i 
(porous or fractured block); ∆t is the time step size; and ηi contains the set of neighboring elements 
(j), porous or fractured block, to which element i is directly connected. Ff is a mass flow term 
between elements i and j, defined [when Equation (2.2) is used] as  
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where subscript ij+1/2 denotes a proper averaging of properties at the interface between the two 
elements and Aij is the common interface area between connected elements i and j.  The mobility of 
phase f is defined as 
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and the flow potential term is 
i2/1ijfifi DgP +ρ−=ψ                (2.6) 

 
where Di is the depth to the center of element i. The mass sink/source term at element i, Qfi for phase 
f, is defined as 

iifif VqQ =             (2.7) 
 
In Equation (2.4), the transmissivity of flow terms is defined (if the integral finite-difference scheme 
is used) as, 
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where  di is the distance from the center of element i to the interface between elements i and j.  
 
In the model formulation, absolute permeability, relative permeability, and the effective non-Darcy 
flow coefficient are all considered as flow properties of the porous media and need to be averaged 
between connected elements in calculating the mass-flow terms. In general, absolute permeability is 
harmonically weighted along the connection between elements i and j, and relative permeability and 
non-Darcy flow coefficients are both upstream weighted. Then, the nonlinear, discrete Equation 
(2.3) is solved using a Newton/Raphson iteration. 
 
The technique used for handling non-Darcy flow through fractured rock follows the dual-
continuum methodology [Warren and Root, 1963; Pruess and Narasimhan, 1985; Wu, 2002a]. 
The method treats fracture-matrix interactions with a multicontinuum numerical approach, 
including the double- or multiporosity method, the dual-permeability method, and the more 
general “multiple interacting continua” (MINC) method. The non-Darcy flow formulation, 
Equation (2.1) or (2.3) is applicable to both singlecontinuum and multicontinuum media. Using 
the dual-continuum concept, Equation (2.1) or (2.3) can be used to describe single-phase and 
multiphase flow, respectively, both in fractures and inside matrix blocks when dealing with 
fractured reservoirs. Special attention needs to be paid to treating fracture-matrix flow terms with 
Equations (2.3) and (2.4) for estimation of mass exchange at fracture-matrix interfaces using a 
double-porosity approach. In particular, Wu [2002a] has shown that for the double-porosity or 
nested discretizations, the characteristic length of non-Darcy flow distance between fractures and 
matrix crossing the interface may be approximated using the results for Darcy flow [Warren and 
Root, 1965; Pruess, 1983]. The flow between fractures and matrix is still evaluated using 
Equation (2.4), however, the transmissivity for the fracture/matrix flow is then given by 
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where km is matrix permeability, and  is the characteristic distance for flow crossing fracture-
matrix interfaces (Table 4.1, Wu, 2002a)  

fml

 
In modeling flow through a fractured rock using the numerical formulation of this work, what a 
modeler needs to do is essentially to figure out how to generate a grid that represents both the 
fracture and matrix systems. Several fracture-matrix subgridding schemes exist for designing 
different meshes for different fracture-matrix conceptual models [Pruess, 1983]. Once a proper 
mesh of a fracture-matrix system is generated, fracture and matrix blocks are specified to 
represent fracture or matrix domains, separately. Formally, they are treated in exactly the same 
way in the solution of the discretized model. However, physically consistent fracture and matrix 
properties and modeling conditions must be appropriately specified for fracture and matrix 
systems, respectively.    
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3. Dimensionless Variable and Analytical Solution 
 
Let us define the following group of dimensionless variables [Earlougher, 1977; Warren and 
Root, 1963]: the dimensionless radius is 

 
w

D r
rr =               (3.1) 

with r being the radial coordinate or distance and rw a well radius. The dimensionless time is 
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for porous formation, 
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for fractured formation. In Equation (3.2), kf is fracture absolute permeability in fractured 
formation, C is compressibility, and subscripts, m and f denote matrix and fracture, respectively. 
The dimensionless non-Darcy flow coefficient is 
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for porous formation, and 
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for fractured formation. and the dimensionless fracture pressure is 
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where Pi is the initial pressure of formation, a constant, and Pw(t) is the well pressure, a function 
of time. Note that in Equation (3.3), qm is a mass production or injection rate, treated as a 
constant. 
 
In addition, Warren and Root define two more dimensionless parameters to characterize double-
porosity flow behavior. The first one is the ratio of fracture porosity-compressibility to the total 
system porosity-compressibility product as: 
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and the second is the interporosity flow parameter: 
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with α being a shape factor of rock matrix blocks. 
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An approximate analytical solution for transient non-Darcy flow in a fractured medium is derived 
[Wu, 2002b] as a superposition of the Warren-Root solution [1963] and the non-Darcy flow 
coefficient:  
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This approximate solution has been shown to be very accurate for non-Darcy flow through normal 
double-porosity fractured media [Wu, 2002b]. 
 
4. Type Curves of Non-Darcy Flow 
 
In this section, we present several applications and discuss single-phase, non-Darcy flow 
behavior. In addition, we provide several commonly used dimensionless pressures or type curves 
for non-Darcy-flow well-test analyses, including: 

(1) Pressure drawdown and buildup analyses 
(2) Effects of finite boundaries for reservoirs 
(3) Pressure draw-down in fractured reservoirs 
(4) Pressure responses in partially penetrating wells of porous and fractured reservoirs 

These application examples deal with single-phase slightly compressible fluid transient flow. In 
addition, type curves of non-Darcy flow through a single well are generated using numerical 
solutions for single-phase, slightly compressible non-Darcy fluid flow in infinite-acting or finite-
acting reservoirs.  
 
Pressure Drawdown and Buildup 
 
This example deals with non-Darcy flow through an infinite-acting reservoir. The flow is 
approximated by a one-dimensional, radially symmetrical formation in the numerical model, 
with an outer boundary radius of 5 × 106 (m), discretized into a one-dimensional grid of 3,100 
gridblocks in logarithmic scale. Initially, the system is undisturbed and at constant pressure. A 
fully penetrating production well, represented by a well element, starts pumping at t = 0, specified at 
a constant water-pumping rate. Input parameters for this problem are presented in Table 1. 
 
Figure 1 shows a set of type curves for pressure drawdown, calculated by the numerical model in terms 
of dimensionless pressure versus dimensionless time. As shown here, the non-Darcy flow coefficient is a 
very important and sensitive parameter for pressure drawdown plots. Therefore, the figure indicates that 
the non-Darcy flow coefficient can be effectively estimated using the type curves with the traditional 
type-curve matching approach due to its sensitivity. 
 
Figure 2 presents simulated pressure drawdown and buildup curves, in which the well is pumped 
for one day only and then shut off. The well pressure variations during the entire pumping and 
shut-in period, as shown in Figure 2, indicate that pressure buildup is insensitive to the values of 
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non-Darcy flow coefficients, compared to drawdown in pumping periods. This insensitivity 
results from the rapid reduction in flow velocity near the well after a well is shut off and non-
Darcy flow effects become ineligible. Many additional modeling investigations have verified this 
observation. Therefore, pressure-buildup tests are not suitable for estimating non-Darcy flow 
coefficients. On the other hand, the pressure-buildup method following non-Darcy flow pumping 
tests will be a good way to determine permeability values without significant non-Darcy flow 
effect. 
 
Effects of Finite Reservoir Boundaries 
 
Boundary effects or well interference in finite, developed reservoirs will show up in well tests 
sooner or later. Two types of boundary conditions, closed and constant pressure conditions, are 
commonly used to approximate the effects of finite reservoir/well boundaries. A finite flow 
system and parameters for finite systems are similar to those above. Only two finite radial 
systems with outer boundary radii (re =1,000 and 10,000 m) are considered. Figures 3 and 4 
show dimensionless pressure drawdown curves, for closed and constant-pressure boundaries as 
well as the two radii. For a smaller, finite, formation system with re = 1,000 m, Figure 3 shows 
that significant boundary effects occur at about dimensionless time tD = 10 8 (1 day in real time), 
at which the well pressure responses deviate from the infinite-acting solution (say, the Theis 
solution for small non-Darcy flow coefficients). For the larger system with re = 10,000 m, 
boundary effects are very similar; but show up much later (Figure 4). 
 
Non-Darcy Flow in Fractured Media 
 
This problem reflects non-Darcy flow through a fractured reservoir. Fracture-matrix formation is 
described using the Warren and Root double-porosity model [Wu, 2002a]. The physical flow model is 
that of typical transient flow towards a well that fully penetrates a radially infinite horizontal, 
uniform, fractured reservoir. In numerical modeling for comparison, a radially finite reservoir (re = 5 
× 106 m) is used and discretized into a one-dimensional (primary) grid. The r-distance of 5 × 106 m 
is subdivided into 3,100 intervals in a logarithmic scale. A double-porosity mesh is generated from 
the primary grid, in which a three-dimensional fracture network and cubic matrix blocks are used. 
The uniform matrix block size is 1 × 1 × 1 m, and fracture permeability and aperture are correlated 
by the cubic law. Input parameters are given in Table 2. 
 
Figure 5 shows a comparison of the numerical modeling results and the approximate analytical 
solution (3.7) with different dimensionless non-Darcy flow coefficients. The two characteristic 
parameters for these cases are λ  and , from the parameters used as listed in 
Table 2. Note that the values of these two parameters are within a typical range of double-porosity 
flow behavior as discussed by Warren and Root. Figure 5 shows excellent agreement between the 
analytical (circled-symbol curves, labeled as P

5106 −×= 3102 −×=ω

D,WR+ βD) and numerical (solid-line curves) solutions, 
except at earlier times (tD < 100) or for large non-Darcy flow coefficients (βD > 10).  
 
For non-Darcy flow into a well from an infinite fractured system, well pressure type curves shown in 
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semi-log plots of Figure 5. The type curves in the figure show that well (fracture) pressures are 
extremely sensitive to the value of non-Darcy flow coefficients; therefore, well pumping tests will 
help to determine this constant in a fractured reservoir. Furthermore, Figure 5 indicates that the 
effects of non-Darcy flow on early transient pressure responses are very strong, such that the first 
semi-log straight lines may not develop when non-Darcy flow is involved in a fracture reservoir. 
 
Non-Darcy Flow with Partial Penetrating Wells  
 
Here, non-Darcy flow is considered occurring in a partially penetrating well from an infinite-
acting, homogeneous, isotropic, porous or fractured reservoir. Flow near a partially penetrating 
production well is three-dimensional towards the wellbore and it is can be handled 
mathematically using a 2-D, axially-symmetrical (r-z) grid. In the numerical model, the infinite-
acting reservoir is approximated by a 2-D, radially symmetrical reservoir with an outer boundary 
radius (r = 1 × 107 m) and a thickness of 10 m in the vertical, z-direction. The system is 
discretized into a 2-D grid of 1,000 divisions in the r direction, using a logarithmic scale and five 
uniform grid layers in the z direction for the porous reservoir. For the fractured flow example, 
the single-porosity, porous reservoir grid is further processed into a double-porosity grid using 
the MINC technology. Initially, the two single-phase systems are both at vertical-gravity 
equilibrium. Partially penetrating wells with a percentage of wellbore completion are represented by 
single-well elements, and the results are compared. 
 
The parameters for the porous reservoir are those given in Table 1, and the fractured-reservoir 
properties are given in Table 2. The fractured reservoir is handled using the double-porosity 
model. Two type-curves for pressure drawdown, calculated in terms of dimensionless pressure 
versus dimensionless time, are shown in Figures 6 and 7, respectively, for the porous and fractured 
reservoirs. Figures 6 and 7 show the significant impact of well-penetration percentage on well 
pressure behavior in both the porous medium and fractured reservoirs. As completed well screen 
lengths decrease (i.e., as wellbore penetration or open-screen length becomes smaller), the flow 
resistance and pressure drops at the well increase significantly to maintain the same production rates. 
We could expect a larger impact of well partial penetration on non-Darcy flow regime near a well 
than on Darcy flow, because of higher flow rates or large non-Darcy flow effects near wellbore. 
However, comparison of the straight lines developed in the type curves at late times (Figures 6 and 
7) indicates that the same pseudo-skin concept [Earlougher, 1977] may also be applicable to 
analyzing partial penetration effects of non-Darcy flow at wells. 
 
5. Summary and Conclusions 
 
This paper presents a theoretical study of non-Darcy flow behavior through porous and fractured 
rock, which may occur near pumping or production wells during high-flux injection of waste 
fluids into underground formations. Both numerical and analytical solutions are used, with non-
Darcy flow simulated using the Forchheimer equation and a three-dimensional, multiphase flow 
reservoir simulator. Non-Darcy flow through a fractured reservoir is handled using a general dual-
continuum approach, covering commonly used conceptual models, such as double porosity, dual 
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permeability, and explicit fracture models.  
 
Using numerical simulation results, we discuss fundamental non-Darcy flow behavior for transient 
pressures in porous and fractured reservoirs. In particular, we provide a number of dimensionless 
type curves for well test analyses of non-Darcy flow wells. The type curves generated include 
various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous 
and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also 
considered. The type curves provided in this work for non-Darcy flow in porous and fractured 
reservoirs can be used in well test interpretations using a type-curve matching technique. 
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Table 1. Parameters for the pressure drawdown and buildup analysis. 

Parameter Value Unit 

Initial Pressure Pi = 10 Bar 
Initial Porosity φi = 0.20  

Reference Fluid Density ρi = 1,000 kg/m3 
Formation Thickness h=10 m 

Fluid Viscosity µ = 1×10-3 Pa•s 
Fluid Compressibility Cf=5 × 10-10 Pa-1 
Rock Compressibility Cr=5 × 10-9  Pa-1 

Permeability k = 9.869×10-13 m2 
Water Pumping Rate q v = 0.1 m3/d 

Wellbore Radius rw = 0.1 m 
Outer Boundary  Radius re= ∞ ≈5× 10 6 m 

Dimensionless non-Darcy  
Flow Coefficient 

βD = 1 × 10—3 , 1, 10, 100 
1 × 10 3, 1 × 10 4, 1 × 10 5 
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Table 2. Parameters for the single-phase, fractured-medium flow problem. 
Parameter Value Unit 

Matrix Porosity φm = 0.30  
Fracture Porosity φf = 0.0006  

Reference Water Density ρw = 1,000 Kg/m3 

Water Phase Viscosity µw = 1×10-3 Pa•s 
Matrix Permeability km = 1.0×10-16 m2 

Fracture Permeability kf = 9.869×10-13 m2 
Water Production Rate qm = 0.1  kg/s 
Rock Compressibility Cr = 1.0×10-9 1/Pa 
Water Compressibility Cw = 5.0×10-10 1/Pa 

Dimensionless non-Darcy  
Flow Coefficient for fracture 

βD, f = 1 × 10-4, 1, 5, 
and 10  

 

Dimensionless non-Darcy  
Flow Coefficient for matrix 

βD, m= 1 × 10-3, 10, 50, 
and 100  
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Figure 1. Type curves for dimensionless pressures for non-Darcy flow in an infinite system 

without wellbore storage and skin effects. 
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Figure 2. Dimensionless pressures for one-day pumping, followed by pressure buildup, of non-

Darcy flow in an infinite system without wellbore storage and skin effects. 
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Figure 3. Type curves for dimensionless pressures for non-Darcy flow in a finite system with 
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an outer boundary radius of 1,000 m. 
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Figure 4. Type curves for dimensionless pressures for non-Darcy flow in a finite system with 

an outer boundary radius of 10,000 m. 
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Figure 5 Type curves for dimensionless pressures for non-Darcy flow in an infinite fractured 
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system with comparisons with the approximate analytical solution. 
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Figure 6. Type curves for dimensionless pressures of non-Darcy flow at partially penetrating 

wells in an infinite porous reservoir (βD = 10) with different degrees of well 
penetration. 
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Figure 7. Type curves for dimensionless pressures of non-Darcy flow at partially penetrating 

wells in an infinite fractured reservoir (βD = 1) with different degrees of well 
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penetration. 


	Berkeley CA 94720, USA
	Flow Coefficient

